skip to main content


Search for: All records

Creators/Authors contains: "Raj, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Excited state chemistry and physics of molecules, in addition to their inherent electronic and steric features, depend on their immediate microenvironments. This study explores the influence of an organic capsule, slightly larger than the reactant molecule itself, on the excited state chemistry of the encapsulated molecule. Results presented here show that the confined molecule, in fact, is not isolated and can be manipulated from outside even without direct physical interaction. Examples where communication between a confined molecule and a free molecule present outside is brought about through electronic and energy transfer processes are presented. Geometric isomerization of octa acid encapsulated stilbenes induced by energy and electron transfer by cationic sensitizers that attach themselves to the anionic capsule is examined. The fact that isomerization occurs when the sensitizer present outside is excited illustrates that the reactant and sensitizer are communicating across the molecular wall of the capsule. Ability to remotely activate a confined molecule opens up new opportunities to bring about reactions of confined radical ions and triplet excited molecules generated via long distance energy and electron transfer processes. 
    more » « less
  2. null (Ed.)
    Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans -azobenzene ( t -Az) and several alkyl-substituted t -Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t -Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t -Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels. 
    more » « less
  3. null (Ed.)
  4. Abstract Proton radioactivity was discovered exactly 50 years ago. First, this nuclear decay mode sets the limit of existence on the nuclear landscape on the neutron-deficient side. Second, it comprises fundamental aspects of both quantum tunnelling as well as the coupling of (quasi)bound quantum states with the continuum in mesoscopic systems such as the atomic nucleus. Theoretical approaches can start either from bound-state nuclear shell-model theory or from resonance scattering. Thus, proton-radioactivity guides merging these types of theoretical approaches, which is of broader relevance for any few-body quantum system. Here, we report experimental measurements of proton-emission branches from an isomeric state in 54m Ni, which were visualized in four dimensions in a newly developed detector. We show that these decays, which carry an unusually high angular momentum, ℓ = 5 and ℓ = 7, respectively, can be approximated theoretically with a potential model for the proton barrier penetration and a shell-model calculation for the overlap of the initial and final wave functions. 
    more » « less
  5. ortho -Nitrobenzyl ( o NB) triggers have been extensively used to release various molecules of interest. However, the toxicity and reactivity of the spent chromophore, o -nitrosobenzaldehyde, remains an unaddressed difficulty. In this study we have applied the well-established supramolecular photochemical concepts to retain the spent trigger o -nitrosobenzaldehyde within the organic capsule after release of water-soluble acids and alcohols. The sequestering power of organic capsules for spent chromophores during photorelease from ortho -nitrobenzyl esters, ethers and alcohols is demonstrated with several examples. 
    more » « less